8,700 research outputs found

    Non-Collinear Magnetic Phases of a Triangular-Lattice Antiferromagnet and Doped CuFeO2_2

    Full text link
    We obtain the non-collinear ground states of a triangular-lattice antiferromagnet with exchange interactions up to third nearest neighbors as a function of the single-ion anisotropy DD. At a critical value of DD, the collinear \uudd phase transforms into a complex non-collinear phase with odd-order harmonics of the fundamental ordering wavevector \vQ . The observed elastic peaks at 2\pi \vx -\vQ in both Al- and Ga- doped CuFeO2_2 are explained by a "scalene" distortion of the triangular lattice produced by the repulsion of neighboring oxygen atoms.Comment: 4 pages 3 figures, accepted for publication by Phys. Rev. B Rapid communication

    Exact Eigenfunctions of a Chaotic System

    Full text link
    The interest in the properties of quantum systems, whose classical dynamics are chaotic, derives from their abundance in nature. The spectrum of such systems can be related, in the semiclassical approximation (SCA), to the unstable classical periodic orbits, through Gutzwiller's trace formula. The class of systems studied in this work, tiling billiards on the pseudo-sphere, is special in this correspondence being exact, via Selberg's trace formula. In this work, an exact expression for Green's function (GF) and the eigenfunctions (EF) of tiling billiards on the pseudo-sphere, whose classical dynamics are chaotic, is derived. GF is shown to be equal to the quotient of two infinite sums over periodic orbits, where the denominator is the spectral determinant. Such a result is known to be true for typical chaotic systems, in the leading SCA. From the exact expression for GF, individual EF can be identified. In order to obtain a SCA by finite series for the infinite sums encountered, resummation by analytic continuation in \hbar was performed. The result is similar to known results for EF of typical chaotic systems. The lowest EF of the Hamiltonian were calculated with the help of the resulting formulae, and compared with exact numerical results. A search for scars with the help of analytical and numerical methods failed to find evidence for their existence.Comment: 53 pages LaTeX, 10 Postscript figure

    Characterization of low-energy magnetic excitations in chromium

    Full text link
    The low-energy excitations of Cr, i.e. the Fincher-Burke (FB) modes, have been investigated in the transversely polarized spin-density-wave phase by inelastic neutron scattering using a single-(Q+-) crystal with a propagation vector (Q+-) parallel to [0,0,1]. The constant-momentum-transfer scans show that the energy spectra consist of two components, namely dispersive FB modes and an almost energy-independent cross section. Most remarkably, we find that the spectrum of the FB modes exhibits one peak at 140 K near Q = (0,0,0.98) and two peaks near Q = (0,0,1.02), respectively. This is surprising because Cr crystallizes in a centro-symmetric bcc structure. The asymmetry of those energy spectra decreases with increasing temperature. In addition, the observed magnetic peak intensity is independent of Q suggesting a transfer of spectral-weight between the upper and lower FB modes. The energy-independent cross section is localized only between the incommensurate peaks and develops rapidly with increasing temperature.Comment: 6 pages, 8 figure
    corecore